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E S T I M A T I O N  O F  T H E  C A R R Y I N G  C A P A C I T Y  O F  c o N I C A L  A C R Y L I C  W I N D O W S  

V. P. Lyanzberg and V.  I. Shalashilin UDC 539.3.621.12.001.2 

A window with a light-transmitting glass element of organic glass is often designed by the scheme 
shown in Fig. 1. Under the action of pressure P,  the conical element 1 is shifted over the conical surface of 
the casing 2 to the position shown by the dotted curve in Fig. 1. Experimental studies of such windows are 
described in [1, 2], which report the results of the first two series of tests with a cone angle (~ = 60 ~ 

In the next two series of experiments, glass elements with cr = 30, 45, and 90 ~ were studied. The 
diameter of the large base of all glass elements is 94 �9 10 -3 m, and the ratio of its thickness h to the smaller 
diameter d for each value of a is equal to 6 = 0.1, 0.3, and 0.5. The acute angle between the lateral surface 
and the large base was not rounded off (r = 2 .10  -3 m). The angle between the smaller base and the lateral 
surface was not rounded off. The bases were polished to transparency. The glass elements were made of block 
organic glass that  was used for specimens of the first two series. In the casings, made of 30KhGSA steel, the 
height of the conical cavity hi exceeded the thickness of the glass element by (10-15)- 10 -3 m. In this case, the 
glass element was located in the conical cavity of the casing up to complete failure. The casing and the glass 
element were fitted to one another. There was no intermediate layer. In the initial step of loading, sealing was 
performed by applying a hermetic layer on the edge of the large base. 

Analysis of the results of all experiments leads to the following conclusions. 
By failure characteristics and the type of dependence of the axial displacement of the lower base w on 

the hydrostatic pressure P,  we can distinguish windows with a = 90 ~ and 6 = 0.1 (thin specimens). They fail 
by splitting into sectors. The curve of P ( w )  has two characteristic sections: initial and nonlinear. Apparently, 
failure of such specimens is a result of bending. 

As 6 increases, the character of failure and the shape of the curve of P(w) change qualitatively. Thus, 
for example, failure of specimens with a = 90 ~ and 6 = 0.3 begins with cleavage of the cone-shaped segment 
on the unloaded base. The larger (loaded) base remains plane. As the cone angle of the window decreases with 
fixed value of 6, the cone-shaped segment cleaved in the first step of failure increases. A similar dependence 
is observed for specimens at constant value of ~ with increase in 6. 

With elevation and drop of pressure for specimens with (~ = 30 and 45 ~ the curve of P(w)  has the 
shape of a hysteresis loop. The glass elements do not return to the initial state. The smaller the cone angle, 
the larger the residual displacement of the glass element. It also increases with increase in pressure. 

The experiments revealed a number of peculiarities in the behavior of glass elements with 6 > 0.1. 
The first of these is that the fracturing pressure depends significantly on the friction coefficient on the surface 
contact between the glass element and the casing. In tests, various friction coefficients are obtained by using 
various intermediate layers between glass elements and casings. At the same time, the radial strain cr on the 
lower surface of the glass element remains stable at the moment of failure. It is considerably smaller than the 
failure strain eb for organic glass. 

For the small friction coefficient, the failure pressure decreases, because, in this case, the axial 
displacement of the lower base of the glass element reaches a limiting value at lower external pressure. 

For (~ = 30 ~ and 6 > 0.14, and a small friction coefficient, the failure character changes qualitatively: 
under axisymmetric loading it becomes nonaxisymmetric. 
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For loading and unloading of specimens with a = 30 and 45 ~ the residual displacement of the glass 
element decreases as the friction coefficient decreases. These results confirm the conclusion drawn in [1, 2]: 
the presence of a loop of the hysteresis type is related to the slippage of specimens in the conical cavity of the 
casing. 

The second feature is the type of dependence of deflection of the point O of the glass element w0 on 
the pressure, which is shown in Fig. 2a. The presence of the section AB, and, in particular, of the descending 
section BC, cannot be explained by the type of the a-e  diagram of the material, because, under compression, 
it increases monotonically up to the moment of failure because of the formation of an antineck. 

These features suggest that  the loss of stability of the material near its lower surface is responsible 
for the failure of the glass element. This still further underlines the dependence of P on w0 - wl (Fig. 2b), 
where w0 is the displacement of the glass element at the center, and wx is the displacement near the casing. 
It becomes clear that  the failure is preceded by buckling at the center of the glass element. 

To evaluate critical stresses, we consider the stability problem for a conical element that  is uniformly 
compressed by radial stresses (Fig. 3). The solution is constructed on the basis of the equations of the linearized 
three-dimensional theory of stability [3] obtained under the assumption that the subcritical stress-strain state 
is uniform. These equations are written in tensor form: 

02 
Lm,~uo, = O, L,,,,, = Wim,~a OziOz#'  i, m, a , /3  = 1, 2, 3, (1) 

where ui is the displacement in the z i  direction. Values of the coefficients 6Oirnctl 3 are given in [3]. We restrict 
ourselves to axisymmetric deformation and denote z] = r and x2 = z. The end surfaces of the elements 
(z = +h) are considered free of stresses azz = 0 and rrz = 0. 

We assume that,  on the lateral conical surface of the elements, the conditions 

u r = 0 ,  O u z / O r = O ,  r = R + / 3 z ,  /3= tan(or /2 )  

hold. This corresponds to rigid clamping of the lateral surface. 
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Here 

After introduction of the resolving function X, system (1) reduces to the equation 

02 02 
(A + 12 ~z2) (A + ( f ~ +  A ) ~ z 2 ) X = O .  

1 1 
12= ; 1 2 + A =  

1 + ao//~ 1 + o'~ + 2#)' 

where A and # are Lam~ constants, ~0 are the desired critical stresses, and A is the Laplacian. 
The boundary conditions take the following form: 

on the lateral surface, 

= 0, A 0 = 0, B = /z 07bz x ,=R+z, ~ x + (n + B) ~ x ,=R+~ ~0 + ~ + 2#; 
and on the end surface (z = +h),  

O # ( ~ + A )  03 A(A +/~) (f~ + A) AX + A + 2/, (~ + 2~)2 ~ ~ x = 0, 

0 A 0 a 
0-'~ A X  - (12 + A) ~ + 21~ OrOz 2 X = O. 

(2) 

(3) 

(4) 

The boundary-value problem (3) and (4) will be solved by the method of perturbation of the boundary 
of a region (see [4, Sec. 5.5]). This method, in contrast to the traditional perturbation method [5], does not 
require transformation to a special coordinate system in which the conical element occupies a canonical region. 
This simplifies the manipulations significantly. 

The conical element will be considered as a perturbation of the cylindrical element shown in Fig. 3 by a 
dashed curve. As the perturbation parameter, we use/3 = tan (a/2). According to the methodical procedure, 
we represent the function x(r ,  z,/3) and the parameters ~ and f~ + A as power series in/3: 

82 ~,(2) /34 /32 12(2) /34 
X = X  (~ 2! A +~- .  X ( 4 ) + . . . ,  1 2 = ~ ( ~  + ~ 1 2 ( 4 ) + . . . ,  

(5) /32 Z4 ~2 + A = (~(0) + A) + ~ ~(2) + ~ ~t(4) + . . . .  

Here we take into account that the plane z = 0 is the middle (along the z axis) plane of the truncated cone. 
Problem (2)-(4) (Fig. 3) is even for/3. Therefore, uneven powers for/3 are not taken into account. 

On the lateral surface, r = R +/3z, and, hence, here x(r, z,/3) = X(/3z + R,  z,/3). With allowance for 
this circumstance, the first series (5) on the lateral surface can be written as 

/32 
x(/3z + R, z,/3) = x (~ + ~. x (2) + . . . ,  

x(.) d" /3)~o (0-~ & 0)"  [ =(0--~ 0r 0)"  [ -a/3. x(r=/3z+a,z, = = + ~  xe=0 + ~  x~=0 

X = c ' :z '  0 ,  x ( . _ i )  . c.J - = 2 . 4  
= i =  0 OrJ [/3=0 j ! (n  - j ) ! '  "'" " 

into Eq. (2) and into the boundary conditions (a) and (4) and 
we obtain the following recursive sequence of boundary-value 
(z = +h) are not given, because they coincide in form with 

,~ + 

We substitute the resulting expressions 
group terms of equal powers of/3. As a result, 
problems. [Below, the conditions at the ends 
conditions (4).] 

The zero approximation is of the form 
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OrOz X(~ = O, r = R  

and the second approximation is of the form 
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(0 )1 = 0, 

02 1-l(2) [2 f~(0) + A] 04 
( A + f l C ~ 1 7 6  + A) ~--~2z2) X(2) = --2~(2) ~z2 AX (0) - "~z4 X (0), 

( 04 03 ) 
02 X (2)=  z 2 ~ X  ( ~  X (~ 

OrOz - Or30z ~ ,=R' 

The problem in a zero approximation is solved in [3]. We write it as 

+ c 3  e x p  ( , : / q a ( 0 ) +  A ) +  C4exp ( _ , : / q a ( 0 ) +  A ) ] .  

The conditions of rigid clamping lead to 6 = zet/R, where a~i is a root of the first-order Bessel function J1- 
From the condition of existence of a nontrivial solution of the  system for determining C, ,  . . . ,  C4, we 

arrive at the characteristic equat ion 

v = [m2c 2 +/12f2]sinh 2 k sinh 2dl - 2flmlcll[cosh 2k cosh 2dl - 1] = 0. 

H e r e  

(6) 

M 
c = K +  

~2(0) ; 

a~lh 
dl = R ~V~-0-y; 

M L S L S 
f l=K+f~(O)+A;  11=-~-(-~+(12(0))3/2; m l = f ~ ( 0 ) +  A F(f~(0)+A)3/2; 

a~th )~()~ + P) (~(o) + A); S - /z (9/(0) + A); 
= ; L = I  ( ~ + 2 / ~ )  2 ) ~ + 2 ~  k Rk/9/(~ + A 

M = ( ~ ) ( ~  K = I ;  ~ ( o ) =  1 + ~ ( ~  

The transcendental  equat ion (6) was solved numerically. The  behavior of the left side v as a function 
of z = o'~ i:; shown in Fig. 4. In the range of real values x = 0-0.35, Eq. (6) has three roots, one of which 
corresponds to x = 0. The  nonzero root that  is smaller in absolute value corresponds to the bending form of 
loss of stability, and the second to the loss of stability with the formation of an antineck. The  behavior of 
these roots as a function of hid is illustrated in Fig. 5, where curve I corresponds to the bending form, and 
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curve II corresponds to the formation of an antineck. With increase in h/d, both solutions approach the value 
a ~ that corresponds to surface instability (curve III). 

The solution was studied numerically for various values of act. Note that when act is equal to the first 
root of the Bessel function J1, the solution of Eq. (6) is only the bending form of loss of stability, and, for the 
next values of ael, the solution exhibits two forms of loss of stability. 

The character of the solution as a function of the parameter zet for l = 1, 2, 3, and 4 is shown in Fig. 
6. Here the curve number corresponds to the value of l, and I-III correspond to the notation in Fig. 5. 

Thus in the general case of a fixed root of the Bessel function dl, there are two nonzero solutions of the 
characteristic equation that correspond to the bending form of the loss of stability ~r ~ and the loss of stability 
with the formation of an antineck a2 ~ Each of these values of a corresponds to a value of the parameter Ft. 
We denote it by ~lrn, where I is the root number of the Bessel function ,/1, and m = 1 corresponds to the 
bending form of loss of stability and m = 2 corresponds to the antineck. 

To each f~t,,~ correspond definite coefficients C1, C2, C3, and C4 in the general solution of stability 
equations. We denote them by Cllm,  C21m, Calm, and C4t,n. 

Then, the eigenfunction that corresponds to the eigenvalue of the parameter ~I~ that is a solution of 
the zero-order approximation problem can be written as 

aelr r ] :.,,,. _- ., ( T )  (Cl,.,.ox. 

r + A] + c.,.,.,.ex. [ + a]}" + c,,. ox. t R,/~!~ 

--(~ Ff2 u~=l. The solution of the subsequent nth approximation is sought as the sum Aim = q" The 

function Utm was chosen so that it satisfies inhomogeneous boundary conditions. Then, F(~ ) is a solution of 
the problem for inhomogeneous equations with homogenous boundary conditions and is defined as 

F,(=) = E E ~(")" (0) J lmik A ik �9 
i k 

We substitute (7) into the corresponding equation and orthogonalize it to the solution of the 
homogenous boundary-value problem with weight p(r) = r. For l = m and i = k, we obtain an equation 
for determining the eigenvalue of the subsequent nth approximation. 

The solution of the second approximation is of the form 

xl~  = E E s,m,~x (~ - z 5 05 

After orthogonalization for l = i and rn = k, we have the equation 

R h 04 02 , ,  (0)] XlOrn)r d rdz  
f~}~ f / [(2 f~i~ ) + A ) ~ z  4 Xi~ ) + 2  ~Z2L&XImJ 

0 - h  

R h 02 04 05 
= / / {[AA + (2~10m) + A)A ~ z 2 +  (~10m) + A)~10m ) ~-~Z4 ] ( - -Z 5 ~ r  2 Xl~ rdrdz. 

0 - h  

Calculating the eigenvalue of the second approximation ~i~ ,  we obtain ~lm = f~i~ + F~i~/32/2" We 
determine the critical value of the axial displacement via the resulting parameter Q. 

It was noted above that the axial displacement of the lower base does not depend on the friction 
coefficient. From this it follows that the corresponding radial stresses at the moment of failure do not depend on 
it either. Therefore, comparison of theoretical and experimental results for the axial displacement is equivalent 
to comparison of radial stresses. We assume that the quantity w is the displacement of the end of the lower 
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Fig. 7 

TABLE 1 

w o . 1 0 - 3 1 w o . 1 0 - 3 ] w  ~  . . 1 0  -3 

a, deg m 

6 = 0 .3  $ = 0.5 

30 
45 
60 
90 

4.9 
3 
2.01 
1.3 

5.2 
3.4 
2.4 
1.8 

5.78 
3.4 
2.6 
1.9 

6 
3.7 
3.1 

base of the window. To w correspond the radial and circular strains 

2w tan (~/2) 
~ : r  = ~ :0  - -  d 

and the stresses 

E 2 w t a n ( a / 2 )  
O" r = 0"  0 = 1 - u 2 d 

Setting a z  = 0, we find 

1 2v 2 w t a n ( a / 2 )  
ez = ~ [~rz - u(ar - ~ro)] = 1 : ' u  2 d 

The strain intensity is given by the equation 

-~-VX/~ - er) 2 = (1 _--u2 ) . (8) 
= _ _  + + = 4 wtan( /2) 2 v  

3 d 1 

As the initial characteristic of the material,  we used the a -e  diagram, from which the  strain diagram 
was constructed. For a two-axial stress state, we have 

1 - 2u ~ 
a i  = tr ,  e i  = e - e s  = e 3 E  a .  

It follows from the experiments that ,  at the moment  of failure of the window, the values of ei far exceed 
the strains at ai = O'proportional. 

The physically nonlinear behavior of the material was taken into account using the tangential-modulus 
concept. The dependence of Gs on at for the given material  was constructed from the a i - e i  dependence by 
numerical integration (Fig. 7). Here Gs is the secant modulus.  

The Poisson coefficient beyond the limit of proportionali ty u' is given by the relation [6] 

i 1 1 - 2 u  Es 
V - -  

2 2 E '  

where Es is the secant modulus.  Using the obtained value of f~ in the relation f~ = 1/(1 + or~ we obtain 

- - =  + 1  = D .  
Gs 

In the Gs - ~ri diagram (Fig. 7), the point of its intersection with the straight Line ,7 = (1/D)cri gives the 
desired value of the critical stress a ~ 

The corresponding strain intensity was also found from the strain diagram. From relation (8), we also 
have the axial displacement 

3 ~ 1 - u 12 
w ~  2 1 - u  p - 2 u  ~d" 
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The calculation and experimental results are given in Table 1. The following conclusion can be drawn. 
For a = 0-30 ~ the values of the theoretical and experimental studies are close. With a further increase in 
a, the difference between the theoretical w ~ and experimental w, critical values of the deflection increases. 
This is apparently due to the fact that, with increase in a, the stress state differs to a greater extent from 
the homogeneous state adopted in the calculations. Neither were the friction forces and the effect of bending 
taken into account. 

The results suggest that the failure of windows, except for specimens with a small thickness-to-diameter 
ratio and a large value of a, is preceded by the loss of stability on the unloaded base of the conical element. 
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